On the Erd\H{o}s-Gyárfás conjecture in claw-free graphs
نویسندگان
چکیده
منابع مشابه
On the Erdös-Gyárfás conjecture in claw-free graphs
The Erdős-Gyárfás conjecture states that every graph with minimum degree at least three has a cycle whose length is a power of 2. Since this conjecture has proven to be far from reach, Hobbs asked if the Erdős-Gyárfás conjecture holds in claw-free graphs. In this paper, we obtain some results on this question, in particular for cubic claw-free graphs.
متن کاملOn the Erdös-Lovász Tihany Conjecture for Claw-Free Graphs
In 1968, Erdös and Lovász conjectured that for every graph G and all integers s, t ≥ 2 such that s + t − 1 = χ(G) > ω(G), there exists a partition (S, T ) of the vertex set of G such that χ(G|S) ≥ s and χ(G|T ) ≥ t. For general graphs, the only settled cases of the conjecture are when s and t are small. Recently, the conjecture was proved for a few special classes of graphs: graphs with stabili...
متن کاملErdös-Gyárfás Conjecture for Cubic Planar Graphs
In 1995, Paul Erdős and András Gyárfás conjectured that for every graph of minimum degree at least 3, there exists a non-negative integer m such that G contains a simple cycle of length 2m. In this paper, we prove that the conjecture holds for 3-connected cubic planar graphs. The proof is long, computer-based in parts, and employs the Discharging Method in a novel way.
متن کاملThe Path Partition Conjecture is true for claw-free graphs
The detour order of a graph G, denoted by (G), is the order of a longest path in G. The Path Partition Conjecture (PPC) is the following: If G is any graph and (a, b) any pair of positive integers such that (G)= a + b, then the vertex set of G has a partition (A,B) such that (〈A〉) a and (〈B〉) b. We prove that this conjecture is true for the class of claw-free graphs.We also show that to prove t...
متن کاملAn approximate version of Hadwiger's conjecture for claw-free graphs
Hadwiger’s conjecture states that every graph with chromatic number χ has a clique minor of size χ. In this paper we prove a weakened version of this conjecture for the class of claw-free graphs (graphs that do not have a vertex with three pairwise nonadjacent neighbors). Our main result is that a claw-free graph with chromatic number χ has a clique minor of size ⌈23χ⌉.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discussiones Mathematicae Graph Theory
سال: 2014
ISSN: 1234-3099,2083-5892
DOI: 10.7151/dmgt.1732